Let’s get our JSON files out of Python.
The flight project data
url_flights = 'https://github.com/byuidatascience/data4missing/raw/master/data-raw/flights_missing/flights_missing.json'
http = urllib3.PoolManager()
response = http.request('GET', url_flights)
flights_json = json.loads(response.data.decode('utf-8'))
flights = pd.json_normalize(flights_json)
Saving JSON files from and pandas dataframe
Remember you need to replace your missing values with NaN.
What parameters do we need to change in .to_json()
to get the same output format?
[
{
"car": "Mazda RX4",
"mpg": 21,
"cyl": 6,
"disp": 160,
"hp": 110,
"drat": 3.9,
"wt": 2.62,
"qsec": 16.46,
"vs": 0,
"am": 1,
"gear": 4,
"carb": 4
},
{
"car": "Mazda RX4 Wag",
"mpg": 21,
"cyl": 6,
"disp": 160,
"hp": 110,
"drat": 3.9,
"wt": 2.875,
"qsec": 17.02,
"am": 1,
"gear": 4,
"carb": 4
},
{
"car": "Datsun 710",
"mpg": 22.8,
"cyl": 4,
"disp": 108,
"hp": 93,
"drat": 3.85,
"wt": 2.32,
"qsec": 18.61,
"vs": 1,
"am": 1,
"gear": 999,
"carb": 1
}
]